Machine Learning with scikit-learn Quick Start Guide: Classification, regression, and clustering techniques in Python

Machine Learning with scikit-learn Quick Start Guide: Classification, regression, and clustering techniques in Python
Machine Learning with scikit-learn Quick Start Guide: Classification, regression, and clustering techniques in Python by Kevin Jolly
English | 2018 | ISBN: 1789343700 | 172 Pages | EPUB | 10 MB

Deploy supervised and unsupervised machine learning algorithms using scikit-learn to perform classification, regression, and clustering.
Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides.
This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement various supervised and unsupervised machine learning models. You will learn classification, regression, and clustering techniques to work with different types of datasets and train your models.
Finally, you will learn about an effective pipeline to help you build a machine learning project from scratch. By the end of this book, you will be confident in building your own machine learning models for accurate predictions.
What you will learn

  • Learn how to work with all scikit-learn’s machine learning algorithms
  • Install and set up scikit-learn to build your first machine learning model
  • Employ Unsupervised Machine Learning Algorithms to cluster unlabelled data into groups
  • Perform classification and regression machine learning
  • Use an effective pipeline to build a machine learning project from scratch